Week 5

Tutorial 5: Volume Integrals



  1. Find a volume bounded by the surface π‘₯+𝑧≀𝑦≀π‘₯+𝑧+5π‘₯ + 𝑧 ≀ 𝑦 ≀ π‘₯ + 𝑧 + 5, x2≀z≀sin⁑x\frac{x}{2}\leq z \leq \sin x and, 0≀π‘₯≀π20 ≀ π‘₯ ≀ \frac{\pi}{2}.
    1. πŸ‘‰
      Solution
      ∭VdV=∫x=0Ο€2∫z=x2sin⁑x∫y=x+zx+z+5dydzdx=∫x=0Ο€2∫z=x2sin⁑x5dzdx=∫x=0Ο€25(sin⁑xβˆ’x2)dx=5[βˆ’cos⁑xβˆ’x24]0Ο€2=5(1βˆ’Ο€216)β€Ύβ€Ύ\begin{aligned}\iiint_VdV&=\int_{x=0}^{\frac{\pi}{2}}\int_{z=\frac{x}{2}}^{\sin x}\int_{y=x+z}^{x+z+5}dydzdx\\&=\int_{x=0}^{\frac{\pi}{2}}\int_{z=\frac{x}{2}}^{\sin x}5dzdx\\&=\int_{x=0}^{\frac{\pi}{2}}5\left(\sin x-\frac{x}{2}\right)dx\\&=5\left[-\cos x-\frac{x^2}{4}\right]_0^{\frac{\pi}{2}}\\&=\underline{\underline{5\left(1-\frac{\pi^2}{16}\right)}}\end{aligned}
  1. Find the total mass of a spherical object with radius of π‘Ÿ=3π‘Ÿ = 3 and with a density function of ρ=eβˆ’h\rho = e^{-h}, where hβ„Ž is the radial distance from the center of the sphere.
    1. πŸ‘‰
      Solution
      Total mass=∭Vρdzdydx=∭Vρr2sin⁑θdΟ•dΞΈdr=∭Veβˆ’rr2sin⁑θdΟ•dΞΈdr=∫r=03∫θ=0Ο€βˆ«Ο•=02Ο€eβˆ’rr2sin⁑θdΟ•dΞΈdr=∫r=03eβˆ’rr2dr∫θ=0Ο€sin⁑θdΞΈβˆ«Ο•=02Ο€dΟ•=[βˆ’eβˆ’r(r2+2r+2)]r=03[βˆ’cos⁑θ]ΞΈ=0Ο€[Ο•]Ο•=02Ο€=(2βˆ’17eβˆ’3)(2)(2Ο€)=4Ο€(2βˆ’17eβˆ’3)β€Ύβ€Ύ\begin{aligned}\text{Total mass}&=\iiint_V\rho dzdydx\\&=\iiint_V\rho r^2\sin\theta d\phi d\theta dr\\&=\iiint_Ve^{-r}r^2\sin \theta d\phi d\theta dr\\&=\int_{r=0}^3\int_{\theta=0}^\pi\int_{\phi=0}^{2\pi}e^{-r}r^2\sin\theta d\phi d\theta dr\\&=\int_{r=0}^3e^{-r}r^2dr\int_{\theta=0}^\pi\sin\theta d\theta\int_{\phi=0}^{2\pi}d\phi\\&=\left[-e^{-r}(r^2+2r+2)\right]_{r=0}^3\left[-\cos\theta\right]_{\theta=0}^\pi\left[\phi\right]_{\phi=0}^{2\pi}\\&=(2-17e^{-3})(2)(2\pi)\\&=\underline{\underline{4\pi(2-17e^{-3})}}\end{aligned}
  1. Find the moment of inertia of the following hollow cylinder with constant density ρ\rho along the zz-axis.
    1. notion image
      πŸ‘‰
      Solution
      Moment of inertia=∭Vρ(x2+y2)dxdydx=∭Vρ(x2+y2)rdzdΞΈdr=∭Vρ(r2cos⁑2ΞΈ+r2sin⁑2ΞΈ)rdzdΞΈdr=∭Vρr3dzdΞΈdr=ρ∫θ=02Ο€βˆ«r=r1r2∫z=0hr3dzdΞΈdr=ρ∫θ=02Ο€dθ∫r=r1r2r3dr∫z=0hdz=ρ[ΞΈ]ΞΈ=02Ο€[r44]r=r1r2[z]z=0h=ρ(2Ο€)(r244βˆ’r144)(h)=12πρh(r24βˆ’r14)β€Ύβ€Ύ\begin{aligned}\text{Moment of inertia}&=\iiint_V\rho(x^2+y^2)dxdydx\\&=\iiint_V\rho(x^2+y^2)rdzd\theta dr\\&=\iiint_V\rho(r^2\cos^2\theta+r^2\sin^2\theta)rdzd\theta dr\\&=\iiint_V\rho r^3 dzd\theta dr\\&=\rho\int_{\theta=0}^{2\pi}\int_{r=r_1}^{r_2}\int_{z=0}^hr^3dzd\theta dr\\&=\rho\int_{\theta=0}^{2\pi}d\theta\int_{r=r_1}^{r_2}r^3dr\int_{z=0}^hdz\\&=\rho\left[\theta\right]_{\theta=0}^{2\pi}\left[\frac{r^4}{4}\right]_{r=r_1}^{r_2}\left[z\right]_{z=0}^h\\&=\rho(2\pi)\left(\frac{r_2^4}{4}-\frac{r_1^4}{4}\right)(h)\\&=\underline{\underline{\frac{1}{2}\pi\rho h(r_2^4-r_1^4)}}\end{aligned}
  1. Find the volume of the following paraboloid. Hint: Inside of the cone boundary is not empty, but it is used to calculate the height upper boundary of the paraboloid (z=Az=A).
    1. notion image
      πŸ‘‰
      Solution
      Radius upper boundary:
      z=x2+y2=r2cos⁑2θ+r2sin⁑2θ=r2r=z\begin{aligned}z&=x^2+y^2\\&=r^2\cos^2\theta+r^2\sin^2\theta\\&=r^2\\r&=\sqrt{z}\end{aligned}
      Height upper boundary:
      z=2yy=2z=2(2)=4\begin{aligned}z&=2y\\y&=2\\z&=2(2)=4\end{aligned}
      Hence, the cylindrical coordinate boundary is: 0≀θ≀2Ο€0\le\theta\le2\pi, 0≀r≀z0\le r\le\sqrt{z}, 0≀z≀40\le z\le4
      ∭VdV=∫θ=02Ο€βˆ«z=04∫r=0zrdrdzdΞΈ=∫θ=02Ο€βˆ«z=04[r22]0zdzdΞΈ=∫θ=02Ο€βˆ«z=04z2dzdΞΈ=∫θ=02Ο€[z24]04dΞΈ=∫θ=02Ο€4dΞΈ=8Ο€β€Ύβ€Ύ\begin{aligned}\iiint_VdV&=\int_{\theta=0}^{2\pi}\int_{z=0}^4\int_{r=0}^{\sqrt{z}}rdrdzd\theta\\&=\int_{\theta=0}^{2\pi}\int_{z=0}^4\left[\frac{r^2}{2}\right]_0^{\sqrt{z}}dzd\theta\\&=\int_{\theta=0}^{2\pi}\int_{z=0}^4\frac{z}{2}dzd\theta\\&=\int_{\theta=0}^{2\pi}\left[\frac{z^2}{4}\right]_0^4d\theta\\&=\int_{\theta=0}^{2\pi}4d\theta\\&=\underline{\underline{8\pi}}\end{aligned}
  1. Evaluate ∭ExdV\iiint_E xdV where 𝐸𝐸 is enclosed by 𝑧=0𝑧 = 0, 𝑧=π‘₯+𝑦+5𝑧 = π‘₯ + 𝑦 + 5, x2+y2=4x^2+y^2=4 and x2+y2=9x^2+y^2=9.
    1. πŸ‘‰
      Solution
      We will use cylindrical coordinates to easily solve this sum. Converting the given outer limits of EE we get:
      z=0,z=rcos⁑θ+rsin⁑θ+5,r=2 and r=3z=0,\quad z=r\cos\theta+r\sin\theta+5,\quad r=2\text{ and }r=3
      Since there is no limitation on the values of ΞΈ\theta, we assume it has the values of 00 to 2Ο€2\pi. This is also in accordance with the diagram which is obtained by drawing these surfaces.
      Also, we substitute x=rcos⁑θx=r\cos\theta in the argument of the integral.
      Thus, the integral is,
      ∫02Ο€βˆ«23∫0rcos⁑θ+rsin⁑θ+5(rcos⁑θ)rdzdrdΞΈ=∫02Ο€βˆ«23(r2cos⁑θ)(rcos⁑θ+rsin⁑θ+5)drdΞΈ=∫02Ο€[r44cos⁑2ΞΈ+r44cos⁑θsin⁑θ+53r3cos⁑θ]r=2r=3dΞΈ=∫02Ο€[658(1+cos⁑2ΞΈ)+658sin⁑(2ΞΈ)+953cos⁑θ]dΞΈ=658(2Ο€+0βˆ’12+0βˆ’0+12)+953(0)=65Ο€4β€Ύβ€Ύ\begin{aligned}&\int_0^{2\pi}\int_2^3\int_0^{r\cos\theta+r\sin\theta+5}(r\cos\theta)rdzdrd\theta\\&=\int_0^{2\pi}\int_2^3(r^2\cos\theta)(r\cos\theta+r\sin\theta+5)drd\theta\\&=\int_0^{2\pi}\left[\frac{r^4}{4}\cos^2\theta+\frac{r^4}{4}\cos\theta\sin\theta+\frac{5}{3}r^3\cos\theta\right]_{r=2}^{r=3}d\theta\\&=\int_0^{2\pi}\left[\frac{65}{8}(1+\cos 2\theta)+\frac{65}{8}\sin(2\theta)+\frac{95}{3}\cos\theta\right]d\theta\\&=\frac{65}{8}\left(2\pi+0-\frac{1}{2}+0-0+\frac{1}{2}\right)+\frac{95}{3}(0)\\&=\underline{\underline{\frac{65\pi}{4}}}\end{aligned}
  1. Integrate the function 𝑓(π‘₯,𝑦,𝑧)=π‘₯𝑦𝑓(π‘₯, 𝑦, 𝑧) = π‘₯𝑦 over the volume enclose by the planes 𝑧=π‘₯+𝑦𝑧 = π‘₯ + 𝑦 and 𝑧=0𝑧 = 0, and between the surfaces 𝑦=π‘₯2𝑦 = π‘₯^2 and π‘₯=𝑦2π‘₯ = 𝑦^2.
    1. πŸ‘‰
      Solution
      Since zz is expressed as a function of (x,y)(x,y), we should integrate in the zz direction first. After this we consider the xyxy-plane.
      The two curves meet at (0,0)(0,0) and (1,1)(1,1). We can integrate in xx or yy first. If we choose yy, we can see that the region begins at y=x2y=x^2 and ends at y=xy=\sqrt{x}, and so xx is between 0 and 1.
      Thus, the integral is,
      ∫01∫x2x∫0x+yf(x,y,z)dzdydx=∫01∫x2x∫0x+yxydzdydx=∫01∫x2xxy([z]z=0z=x+y)dydx=∫01∫x2xxy(x+y)dydx=∫01∫x2x(x2y+y2x)dydx=∫01[x2y22+y3x3]y=x2y=xdx=12∫01(x2(x)2βˆ’x2(x2)2)dx+13∫01((x)3xβˆ’(x2)3x)dx=12∫01(x3βˆ’x6)dx+13∫01(x52βˆ’x7)dx=12(14βˆ’17)+13(27βˆ’18)=328β€Ύβ€Ύ\begin{aligned}&\int_0^1\int_{x^2}^{\sqrt{x}}\int_0^{x+y}f(x,y,z)dzdydx\\&=\int_0^1\int_{x^2}^{\sqrt{x}}\int_0^{x+y}xydzdydx\\&=\int_0^1\int_{x^2}^{\sqrt{x}}xy\left(\left[z\right]_{z=0}^{z=x+y}\right)dydx\\&=\int_0^1\int_{x^2}^{\sqrt{x}}xy(x+y)dydx\\&=\int_0^1\int_{x^2}^{\sqrt{x}}(x^2y+y^2x)dydx\\&=\int_0^1\left[\frac{x^2y^2}{2}+\frac{y^3x}{3}\right]_{y=x^2}^{y=\sqrt{x}}dx\\&=\frac{1}{2}\int_0^1\left(x^2(\sqrt{x})^2-x^2(x^2)^2\right)dx+\frac{1}{3}\int_0^1\left((\sqrt{x})^3x-(x^2)^3x\right)dx\\&=\frac{1}{2}\int_0^1(x^3-x^6)dx+\frac{1}{3}\int_0^1\left(x^{\frac{5}{2}}-x^7\right)dx\\&=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{3}\left(\frac{2}{7}-\frac{1}{8}\right)\\&=\underline{\underline{\frac{3}{28}}}\end{aligned}
  1. Find the volume of the tetrahedron with corners at (0,0,0)(0,0,0), (0,3,0)(0,3,0), (2,3,0)(2,3,0), and (2,3,5)(2,3,5).
    1. πŸ‘‰
      Solution
      The whole problem comes down to correctly describing the region by inequalities:
      0≀x≀2,3x2≀y≀3,0≀z≀5x20\le x\le2,\quad\frac{3x}{2}\le y\le3,\quad0\le z\le\frac{5x}{2}
      The lower yy limit comes from the equation of the line y=3x2y = \frac{3x}{2} that forms one edge of the tetrahedron in the x-y plane
      The upper zz limit comes from the equation of the plane z=5x2z = \frac{5x}{2} that forms the β€œupper” side of the tetrahedron. Now the volume is
      ∫02∫3x23∫05x2dzdydx=∫02∫3x23z∣05x2dydx=∫03∫3x235x2dydx=∫025x2y∣3x23dx=∫0215x2βˆ’15x24dx=15x4βˆ’15x312∣02=15βˆ’10=5β€Ύβ€Ύ\begin{aligned}\int_0^2\int_{\frac{3x}{2}}^3\int_0^{\frac{5x}{2}}dzdydx&=\int_0^2\int_{\frac{3x}{2}}^3\left.z\right|_0^{\frac{5x}{2}}dydx\\&=\int_0^3\int_{\frac{3x}{2}}^3\frac{5x}{2}dydx\\&=\int_0^2\left.\frac{5x}{2}y\right|_{\frac{3x}{2}}^3dx\\&=\int_0^2\frac{15x}{2}-\frac{15x^2}{4}dx\\&=\left.\frac{15x}{4}-\frac{15x^3}{12}\right|_0^2\\&=15-10=\underline{\underline{5}}\end{aligned}
  1. Find the volume under 𝑧=4βˆ’r2𝑧 =\sqrt{4-r^2} above the quarter circle inside x2+y2=4x^2+y^2=4 in the first quadrant.
    1. πŸ‘‰
      Solution
      ∫0Ο€2∫02∫04βˆ’r2rdzdrdΞΈ=∫0Ο€2∫024βˆ’r2rdrdΞΈ=∫0Ο€2βˆ’13(4βˆ’r2)32∣02dΞΈ=∫0Ο€283dΞΈ=4Ο€3β€Ύβ€Ύ\begin{aligned}\int_0^{\frac{\pi}{2}}\int_0^2\int_0^{\sqrt{4-r^2}}rdzdrd\theta&=\int_0^{\frac{\pi}{2}}\int_0^2\sqrt{4-r^2}rdrd\theta\\&=\int_0^{\frac{\pi}{2}}\left.-\frac{1}{3}(4-r^2)^{\frac{3}{2}}\right|_0^2d\theta\\&=\int_0^{\frac{\pi}{2}}\frac{8}{3}d\theta\\&=\underline{\underline{\frac{4\pi}{3}}}\end{aligned}
  1. An object occupies the space inside both the cylinder x2+y2=1x^2+y^2=1 and the sphere x2+y2+z2=4x^2+y^2+z^2=4 , and has density π‘₯2π‘₯^2 at (π‘₯,𝑦,𝑧)(π‘₯, 𝑦, 𝑧). Find the total mass.
    1. πŸ‘‰
      Solution
      ∫02Ο€βˆ«01βˆ«βˆ’4βˆ’r24βˆ’r2r3cos⁑2(ΞΈ)dzdrdΞΈ=∫02Ο€βˆ«0124βˆ’r2r3cos⁑2(ΞΈ)drdΞΈ=∫02Ο€(12815βˆ’2253)cos⁑2(ΞΈ)dΞΈ=(12815βˆ’2253)Ο€β€Ύβ€Ύ\begin{aligned}\int_0^{2\pi}\int_0^1\int_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}}r^3\cos^2(\theta)dzdrd\theta&=\int_0^{2\pi}\int_0^12\sqrt{4-r^2}r^3\cos^2(\theta)drd\theta\\&=\int_0^{2\pi}\left(\frac{128}{15}-\frac{22}{5}\sqrt{3}\right)\cos^2(\theta)d\theta\\&=\underline{\underline{\left(\frac{128}{15}-\frac{22}{5}\sqrt{3}\right)\pi}}\end{aligned}
  1. Find the volume bounded by the cylinder x2+y2=4x^2+y^2=4 and the planes 𝑦+𝑧=4𝑦 + 𝑧 = 4; 𝑧=βˆ’1𝑧 = βˆ’1.
    1. notion image
      πŸ‘‰
      Solution
      Place the volume element in general position, and integrate to a rod along the zz-direction. Then integrate the rod over the circle:
      V=∬Circle∫z=βˆ’1z=4βˆ’ydzdxdy=∬Circle(5βˆ’y)dxdy=βˆ«Ο•=02Ο€βˆ«r=02(5βˆ’rsin⁑ϕ)rdrdΟ•=βˆ«Ο•=02Ο€5rβˆ’r22sinβ‘Ο•βˆ£r=0r=2dΟ•=βˆ«Ο•=02Ο€[10βˆ’2sin⁑ϕ]dΟ•=10Ο•+2cosβ‘Ο•βˆ£02Ο€=20Ο€β€Ύβ€Ύ\begin{aligned}V&=\iint_{\text{Circle}}\int_{z=-1}^{z=4-y}dzdxdy\\&=\iint_{\text{Circle}}(5-y)dxdy\\&=\int_{\phi=0}^{2\pi}\int_{r=0}^2(5-r\sin\phi)rdrd\phi\\&=\int_{\phi=0}^{2\pi}\left.5r-\frac{r^2}{2}\sin\phi\right|_{r=0}^{r=2}d\phi\\&=\int_{\phi=0}^{2\pi}[10-2\sin\phi]d\phi\\&=\left.10\phi+2\cos\phi\right|_0^{2\pi}\\&=\underline{\underline{20\pi}}\end{aligned}