Week 14

Tutorial 14: Laplace’s Equations


Class Recording
Whiteboard

  1. Solve the Laplace's equation for a rectangular plate
    1. βˆ‚2uβˆ‚x2+βˆ‚2uβˆ‚y2=0,0<x<a,0<y<b\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<a, \quad 0<y<b
      subject to the given boundary conditions
      u(0,y)=0,u(a,y)=0,0<y<bu(x,0)=0,u(x,b)=f(x)0<x<a\begin{array}{lll} u(0, y)=0, & u(a, y)=0, & 0<y<b \\ u(x, 0)=0, & u(x, b)=f(x) & 0<x<a \end{array}
      πŸ‘‰
      Solution
      Using u=XYu=X Y and βˆ’Ξ»2-\lambda^{2} as a separation constant leads to
      Xβ€²β€²+Ξ»2X=0X(0)=0X(a)=0\begin{gathered} X^{\prime \prime}+\lambda^{2} X=0 \\ X(0)=0 \\ X(a)=0 \end{gathered}
      and
      Yβ€²β€²βˆ’Ξ»2Y=0Y(0)=0.\begin{gathered} Y^{\prime \prime}-\lambda^{2} Y=0 \\ Y(0)=0 . \end{gathered}
      Then
      X=c1sin⁑nΟ€ax and Y=c2sinh⁑nΟ€ayX=c_{1} \sin \frac{n \pi}{a} x \quad \text { and } \quad Y=c_{2} \sinh \frac{n \pi}{a} y
      for n=1,2,3,…n=1,2,3, \ldots so that
      u=βˆ‘n=1∞Ansin⁑nΟ€axsinh⁑nΟ€ayu=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{a} x \sinh \frac{n \pi}{a} y
      Imposing
      u(x,b)=f(x)=βˆ‘n=1∞Ansinh⁑nΟ€basin⁑nΟ€axu(x, b)=f(x)=\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi b}{a} \sin \frac{n \pi}{a} x
      gives
      Ansinh⁑nΟ€ba=2a∫0af(x)sin⁑nΟ€axdxA_{n} \sinh \frac{n \pi b}{a}=\frac{2}{a} \int_{0}^{a} f(x) \sin \frac{n \pi}{a} x d x
      so that
      u(x,y)=βˆ‘n=1∞Ansin⁑nΟ€axsinh⁑nΟ€ayu(x, y)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{a} x \sinh \frac{n \pi}{a} y
      where
      An=2acsch⁑nΟ€ba∫0af(x)sin⁑nΟ€axdxA_{n}=\frac{2}{a} \operatorname{csch} \frac{n \pi b}{a} \int_{0}^{a} f(x) \sin \frac{n \pi}{a} x d x
  1. Solve the Laplace's equation for a rectangular plate
    1. βˆ‚2uβˆ‚x2+βˆ‚2uβˆ‚y2=0,0<x<1,0<y<1\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<1, \quad 0<y<1
      subject to the given boundary conditions
      u(0,y)=0,u(1,y)=1βˆ’y,0<y<1βˆ‚uβˆ‚y∣y=0=0,βˆ‚uβˆ‚y∣y=1=0,0<x<1\begin{array}{llll} u(0, y)=0, & u(1, y)=1-y, & & 0<y<1 \\ \left.\frac{\partial u}{\partial y}\right|_{y=0}=0, & \left.\frac{\partial u}{\partial y}\right|_{y=1}=0, & & 0<x<1 \end{array}
      πŸ‘‰
      Solution
      Using u=XYu=X Y and Ξ»2\lambda^{2} as a separation constant leads to
      Xβ€²β€²+βˆ’Ξ»2X=0,X(0)=0,\begin{gathered} X^{\prime \prime}+-\lambda^{2} X=0, \\ X(0)=0, \end{gathered}
      and
      Yβ€²β€²+Ξ»2Y=0,Yβ€²(0)=0Yβ€²(1)=0.\begin{gathered} Y^{\prime \prime}+\lambda^{2} Y=0, \\ Y^{\prime}(0)=0 \\ Y^{\prime}(1)=0 . \end{gathered}
      Then
      Y=c1cos⁑nΟ€yY=c_{1} \cos n \pi y
      for n=0,1,2,…n=0,1,2, \ldots and
      X=c2x or X=c2sinh⁑nΟ€xX=c_{2} x \text { or } X=c_{2} \sinh n \pi x
      for n=1,2,3,…n=1,2,3, \ldots so that
      u=A0x+βˆ‘n=1∞Ansinh⁑nΟ€xcos⁑nΟ€yu=A_{0} x+\sum_{n=1}^{\infty} A_{n} \sinh n \pi x \cos n \pi y
      Imposing
      u(1,y)=1βˆ’y=A0+βˆ‘n=1∞Ansinh⁑nΟ€xcos⁑nΟ€yu(1, y)=1-y=A_{0}+\sum_{n=1}^{\infty} A_{n} \sinh n \pi x \cos n \pi y
      gives
      A0=∫01(1βˆ’y)dyA_{0}=\int_{0}^{1}(1-y) d y
      and
      Ansinh⁑nΟ€=2∫01(1βˆ’y)cos⁑nΟ€y=2[1βˆ’(βˆ’1)n]n2Ο€2sinh⁑nΟ€A_{n} \sinh n \pi=2 \int_{0}^{1}(1-y) \cos n \pi y=\frac{2\left[1-(-1)^{n}\right]}{n^{2} \pi^{2} \sinh n \pi}
      for n=1,2,3,…n=1,2,3, \ldots so that
      u(x,y)=12x+2Ο€2βˆ‘n=1∞1βˆ’(βˆ’1)nn2sinh⁑nΟ€sinh⁑nΟ€xcos⁑nΟ€yu(x, y)=\frac{1}{2} x+\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n^{2} \sinh n \pi} \sinh n \pi x \cos n \pi y
  1. Solve the Laplace's equation for a rectangular plate
    1. βˆ‚2uβˆ‚x2+βˆ‚2uβˆ‚y2=0,0<x<Ο€,0<y<Ο€\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<\pi, \quad 0<y<\pi
      subject to the given boundary conditions
      βˆ‚uβˆ‚x∣x=0=u(0,y),u(Ο€,y)=1,0<y<Ο€u(x,0)=0,u(x,Ο€)=0,0<x<Ο€\left.\frac{\partial u}{\partial x}\right|_{x=0}=u(0, y), \quad u(\pi, y)=1, \quad 0<y<\pi\\u(x, 0)=0, \quad u(x, \pi)=0, \quad 0<x<\pi
      πŸ‘‰
      Solution
      Using u=XYu=X Y and Ξ»2\lambda^{2} as a separation constant leads to
      Xβ€²β€²βˆ’Ξ»2X=0Xβ€²(0)=X(0)\begin{aligned} &X^{\prime \prime}-\lambda^{2} X=0 \\ &X^{\prime}(0)=X(0) \end{aligned}
      and
      Yβ€²β€²+Ξ»2Y=0,Y(0)=0Y(Ο€)=0\begin{gathered} Y^{\prime \prime}+\lambda^{2} Y=0, \\ Y(0)=0 \\ Y(\pi)=0 \end{gathered}
      Then
      Y=c1sin⁑ny and X=c2(ncosh⁑nx+sinh⁑nx)Y=c_{1} \sin n y \quad \text { and } \quad X=c_{2}(n \cosh n x+\sinh n x)
      for n=1,2,3,…n=1,2,3, \ldots so that
      u=βˆ‘n=1∞An(ncosh⁑nx+sinh⁑nx)sin⁑nyu=\sum_{n=1}^{\infty} A_{n}(n \cosh n x+\sinh n x) \sin n y
      Imposing
      u(Ο€,y)=1=βˆ‘n=1∞An(ncosh⁑nΟ€+sinh⁑nΟ€)sin⁑nyu(\pi, y)=1=\sum_{n=1}^{\infty} A_{n}(n \cosh n \pi+\sinh n \pi) \sin n y
      gives
      An(ncosh⁑nΟ€+sinh⁑nΟ€)=2Ο€βˆ«0Ο€sin⁑nydy=2[1βˆ’(βˆ’1)n]nΟ€A_{n}(n \cosh n \pi+\sinh n \pi)=\frac{2}{\pi} \int_{0}^{\pi} \sin n y d y=\frac{2\left[1-(-1)^{n}\right]}{n \pi}
      for n=1,2,3,…n=1,2,3, \ldots so that
      u(x,y)=2Ο€βˆ‘n=1∞1βˆ’(βˆ’1)nnncosh⁑nx+sinh⁑nxncosh⁑nΟ€+sinh⁑nΟ€sin⁑nyu(x, y)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n} \frac{n \cosh n x+\sinh n x}{n \cosh n \pi+\sinh n \pi} \sin n y
πŸ‘‰
Note that the question changed for Question 4
  1. Solve the Laplace's equation for a rectangular plate
    1. βˆ‚2uβˆ‚x2+βˆ‚2uβˆ‚y2=0,0<x<y,0<y<1\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<y, \quad 0<y<1
      subject to the given boundary conditions Answer:
      u(0,y)=10yβˆ‚uβˆ‚x∣x=1=βˆ’1,0<y<1u(x,0)=0,u(x,1)=0,0<x<y\begin{aligned} & u(0, y)=\left.10 y \quad \frac{\partial u}{\partial x}\right|_{x=1}=-1, \quad 0<y<1 \\ & u(x, 0)=0, \quad u(x, 1)=0, \quad 0<x<y \end{aligned}
      πŸ‘‰
      Solution
      This boundary-value problem has the form of Problem 2 in this section, with a=1a=1 and b=1b=1. Thus, the solution has the form
      u(x,y)=βˆ‘n=1∞(Ancosh⁑nΟ€x+Bnsinh⁑nΟ€x)sin⁑nΟ€y u(x, y)=\sum_{n=1}^{\infty}\left(A_{n} \cosh n \pi x+B_{n} \sinh n \pi x\right) \sin n \pi y 
      The boundary condition u(0,y)=10yu(0, y)=10 y implies
      10y=βˆ‘n=1∞Ansin⁑nΟ€y10 y=\sum_{n=1}^{\infty} A_{n} \sin n \pi y
      and
      An=21∫0110ysin⁑nΟ€ydy=20nΟ€(βˆ’1)n+1A_{n}=\frac{2}{1} \int_{0}^{1} 10 y \sin n \pi y d y=\frac{20}{n \pi}(-1)^{n+1}
      The boundary condition ux(1,y)=βˆ’1u_{x}(1, y)=-1 implies
      βˆ’1=βˆ‘n=1∞(nΟ€Ansinh⁑nΟ€+nΟ€Bncosh⁑nΟ€)sin⁑nΟ€y-1=\sum_{n=1}^{\infty}\left(n \pi A_{n} \sinh n \pi+n \pi B_{n} \cosh n \pi\right) \sin n \pi y
      and
      nΟ€Ansinh⁑nΟ€+nΟ€Bncosh⁑nΟ€=21∫01(βˆ’sin⁑nΟ€y)dyAnsinh⁑nΟ€+Bncos⁑nΟ€=βˆ’2nΟ€[1βˆ’(βˆ’1)n]Bn=2nΟ€[(βˆ’1)nβˆ’1]sech⁑nΟ€βˆ’20nΟ€(βˆ’1)n+1tanh⁑nΟ€\begin{aligned} n \pi A_{n} \sinh n \pi+n \pi B_{n} \cosh n \pi &=\frac{2}{1} \int_{0}^{1}(-\sin n \pi y) d y \\ A_{n} \sinh n \pi+B_{n} \cos n \pi &=-\frac{2}{n \pi}\left[1-(-1)^{n}\right] \\\\ \end{aligned}\\B_{n} =\frac{2}{n \pi}\left[(-1)^{n}-1\right] \operatorname{sech} n \pi-\frac{20}{n \pi}(-1)^{n+1} \tanh n \pi