| f(t)=L−1{F(s)} | F(s)=L{f(t)} |
1. | | |
2. | | |
3. | tn,n=1,2,3,… | sn+1n! |
4. | tp,p>−1 | sp+1Γ(p+1) |
5. | | 2s23π |
6. | tn−21, n=1,2,3,… | 2nsn+211⋅3⋅5⋯(2n−1)π |
7. | sin(at) | s2+a2a |
8. | cos(at) | s2+a2s |
9. | tsin(at) | (s2+a2)22as |
10. | tcos(at) | (s2+a2)2s2−a2 |
11. | sin(at)−atcos(at) | (s2+a2)22a3 |
12. | sin(at)+atcos(at) | (s2+a2)22as2 |
13. | cos(at)−atsin(at) | (s2+a2)2s(s2−a2) |
14. | cos(at)+atsin(at) | (s2+a2)2s(s2+3a2) |
15. | sin(at+b) | s2+a2ssin(b)+acos(b) |
16. | cos(at+b) | s2+a2scos(b)−asin(b) |
17. | sinh(at) | s2−a2a |
18. | cosh(at) | s2−a2s |
19. | eatsin(bt) | (s−a)2+b2b |
20. | eatcos(bt) | (s−a)2+b2s−a |
21. | eatsinh(bt) | (s−a)2−b2b |
22. | eatcosh(bt) | (s−a)2−b2s−a |
23. | tneat, n=1,2,3,… | (s−a)n+1n! |
24. | | c1F(cs) |
25. | uc(t)=u(t−c) | se−cs |
26. | | e−cs |
27. | uc(t)f(t−c) | e−csF(s) |
28. | uc(t)g(t) | e−csL{g(t+c)} |
29. | ectf(t) | |
30. | tnf(t), n=1,2,3,… | (−1)nF(n)(s) |
31. | t1f(t) | ∫s∞F(u)du |
32. | ∫0tf(v)dv | sF(s) |
33. | ∫0tf(t−τ)g(τ)dτ | F(s)G(s) |
34. | f(t+T)=f(t) | 1−e−sT∫0Te−stf(t)dt |
35. | | sF(s)−f(0) |
36. | f′′(t) | s2F(s)−sf(0)−f′(0) |
37. | | snF(s)−sn−1f(0)−sn−2f′(0)⋯−sf(n−2)(0)−f(n−1)(0) |